

Available online at www.sciencedirect.com

COORDINATION CHEMISTRY REVIEWS

Coordination Chemistry Reviews 251 (2007) 2266-2279

www.elsevier.com/locate/ccr

Review

Recent developments in the coordination and organometallic chemistry of Kläui oxygen tripodal ligands

Wa-Hung Leung a,*, Qian-Feng Zhang b, Xiao-Yi Yi a

^a Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
^b Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui 243002, PR China

Received 13 October 2006; accepted 30 November 2006 Available online 8 December 2006

Contents

1.	Intro	Introduction			
2.	Ligar	nd syntheses	2267		
3.	Surve	ey of metal complexes with L _{OR} ⁻	2268		
	3.1.	s-and p-Block elements	2268		
	3.2.	d-Block elements	2269		
		3.2.1. Groups 3 and 4	2269		
		3.2.2. Groups 5 and 6	2271		
		3.2.3. Groups 7 and 8	2274		
		3.2.4. Groups 9–12	2276		
	3.3.	f-Block elements	2276		
4.	Applications of metal complexes with Kläui's tripodal ligands				
	4.1.	Electrocatalysis	2276		
	4.2.	Organic transformations	2277		
	4.3.	Homogeneous catalysis	2278		
	4.4.	Catalytic polymerization	2278		
	4.5.	Extraction and separation of metal ions	2278		
5.	Conc	clusion	2278		
	Acknowledgment				
	Refer	rences	2278		

Abstract

The Kläui oxygen tripodal ligands $[(\eta^5-C_5H_5)Co\{P(O)(OR)_2\}_3]^-$ (L_{OR}^- where R=alkyl group), which have been recognized as oxygen analogues of cyclopentadienyl, can form stable complexes with a range of main group and transition metal ions. This review reports on the recent developments in the coordination and organometallic chemistry of the Kläui tripodal ligands. Special attention will be paid to polynuclear $M-L_{OEt}$ (M=Ti, Zr) oxo and hydroxo compounds that may serve as models for group 4 metal aqua ions. © 2006 Elsevier B.V. All rights reserved.

Keywords: Oxygen ligand; Tripodal ligand; Metal complex; Cluster

1. Introduction

The mono-anionic oxygen tripodal ligands of the general formula $[CpCo(P(O)(X)_2)_3]^ (L_x^-)$, where Cp = cyclopentadienyl; X = alkyl, aryl, alkoxy or aryloxy (Scheme 1), developed by Kläui and co-workers [1–4] have been recognized as oxygen analogues of cyclopentadienyl. The

^{*} Corresponding author. Tel.: +852 2358 7360; fax: +852 2358 1594. *E-mail address*: chleung@ust.hk (W.-H. Leung).

$$\begin{array}{cccc}
X & & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & \\
O & & & & & & \\
O & & & & & & \\
V & & & & & & \\
X & & & & & \\
X & & & & & \\
X & & & & & \\
R & & & & & & \\
R & & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
X & & & & & & \\
P & & & & & \\
X & & & & \\
X & & & & \\
X & & & & \\
R & & & & & \\
R & & & & & \\
\end{array}$$

Scheme 1. Structure of the Kläui oxygen tripodal ligands.

Kläui tripodal ligands can form stable complexes with various main group and transition metal ions [1,5–10]. Owing to their hydrolytic stability, they have been used as models of facially coordinated aqua ligands in organometallic compounds [11]. Despite their hardness and strong π -donor strength, L_x^- are compatible with both hard and soft metal ions, exhibiting interesting organometallic chemistry. The use of M-L_x complexes in homogeneous catalysis has been reported [12].

This review summarizes the recent developments in the coordination and organometallic chemistry of the Co(III)-based Kläui tripodal ligands [CpCo{P(O)(OR) $_2$ } $_3$] $^-$, denoted as L_{OR}^- . In particular, the studies on polynuclear Ti(IV)- and Zr(IV)- L_{OEt} oxo and hydroxo complexes that are relevant to group 4 aqua ions will be highlighted. The review is organized into three sections: (i) Ligand syntheses, (ii) Survey of metal complexes, and (iii) Applications. The survey of complexes, which is organized by groups, will cover the works published after 1990. A detailed account on metal complexes

with L_{OR}^- prepared prior to 1990 can be found in Kläui's review [1].

2. Ligand syntheses

 L_{OR}^- are generally synthesized by (i) reaction of [CP₂Co] (method A), [Cp*Co(acac)] (Cp*= η^5 -C₅Me₅, acac⁻ = acetylacetonate) (method B), or [Cp₂Co]^{+/n}BuLi (method C) with HP(O)(OR)₂ followed by demetallation with NaCN in air; (ii) reaction of [CpCoI₂(CO)₂] with P(OR)₃ followed by Arbuzov dealkylation with NaI (method D); or (iii) reaction of [CpCoI₂(CO)₂] or [Cp*CoCl₂]₂ with NaP(O)(OR)₂ (method E) (Scheme 2) [2–4,12–14].

The analogous Ir(III)-based tripodal ligand $[Cp*Ir\{P(O)(OMe)_2\}_3]^-$ has been prepared by reaction of $[Cp*IrCl_2]_2$ with $Ag(ClO_4)$ and $P(OMe)_3$ followed by NaI/acetone [15]. Di-anionic Ru(II)-based tripodal ligands $[Cp*Ru\{P(O)(OR)_2\}_3]^{2-}$ ($L_{Ru,OR}^{2-}$), where R=Me, Et, Pr^i , have been synthesized by either (i) treatment of $[Cp*Ru(OMe)]_2$ with $HP(O)(OR)_2$ (R=Me, Ph) followed by dealkylation with NaI, or (ii) direct reaction of $[Cp*RuCl]_2$ with $NaP(O)(OEt)_2$. Similar to mono-anionic L_{OR}^- , $L_{Ru,OR}^{2-}$ reacted with metal halides to give stable complexes of the types $[M(L_{Ru,OR})_2]^{n-}$ ($M=Si^{IV}$, Ti^{IV} , Nb^{IV} , n=0; Cr^{III} , Fe^{III} , n=1; Co^{II} , n=2) and $[MX(L_{Ru,OR})]$ (MX=BPh or $V^{IV}(O)$) [16,17].

Kläui tripodal ligands bearing functional groups in pendant side chains $[CpCo\{P(O)(OMe)(OR')_3\}]^-$, where $R = (C_2H_4O)_nCH_2CH=CH_2$, $(C_2H_4O)_nC_2H_4CN$, $(C_3H_6)CN$, $C_3H_6C(O)CH_3$, $(CH_2)_5CO_2Me$; n=1 or 2, have been synthesized by reaction of $[CpCoI_2(CO)P(OMe)(OR')]$ with $P(OMe)_2(OR)$ followed by dealkylation with NaI, and iso-

Scheme 2. Synthetic routes to L_{OR}^{-} .

Scheme 3. Newman projections of the RRR/SSS and RRS/SSR diasteromers of $L_{OMe,OR}^-$ (R and S refer to the configurations of the phosphorus centers).

lated as two pairs of disastereomers, namely the *RRR/SSS* and *RRS/SSR* isomers (Scheme 3), according to NMR spectroscopy [12].

Hydrolysis of Na[CpCo{P(O)(OMe)(O(CH₂)₅CO₂Me)}₃] and Na[(η^5 -C₅H₄CO₂Me)Co{P(O)(OMe)₂}₃] with KOH followed by protonation with H₂SO₄ afforded carboxy-substituted tripodal ligands Na[CpCo{P(O)(OMe)(O(CH₂)₅CO₂H)}₃] and Na[(η^5 -C₅H₄CO₂H)Co{P(O)(OMe)₂}₃], respectively [18].

The chiral C₃-symmetric tripodal ligand L_{S-BINOL} has been synthesized by reaction of the sodium salt of HP(O)(*S*-BINOL) (*S*-BINOLH₂ = (*S*-(-)-bi-2-napthol) with [CpCoI₂(CO)]. Recrystallization of Na(L_{S-BINOL}) from acetone led to isolation of [(L_{R-BINOL})Na(C₆H₁₂O₂)₂] (Scheme 4), the diacetone alcohol ligands of which were derived from the aldol reaction of acetone. The chiral nature of L_{S-BINOL} is indicated by its large measured optical rotation, [α]⁷²_D = -446° (CH₂Cl₂, c 0.36). The *R*-isomer L_{R-BINOL} was prepared similarly from NaP(O)(*R*-BINOL) and [CpCoI₂(CO)] [19].

Na(L_{OR}) tends to aggregate in both the solid state and solutions, and the degree of aggregation is dependent upon the size of the R group. While Na(L_{OEt}) forms a trimeric aggregate [Na(L_{OEt})]₃·2H₂O containing the triangular Na₃ core capped by two μ_3 -aqua ligands [10], the phenoxy analogue [Na(L_{OPh})]₂ is a dimer, in which each Na binds to four P=O groups [14]. Negative-ion electrospray mass spectra of Na(L_{OR}) (R=Me, Et, Prⁱ) in PrⁱOH/H₂O (1:1) show peaks that can be assigned to [Na(L_{OR})₂]⁻, [Na₂(L_{OR})₃]⁻, and [Na₃(L_{OR})₄]⁻ (for R=Me). Addition of NaCl to the solutions of Na(L_{OR}) resulted in the appearance of new peaks attributable to the NaCl adducts of the types {[L_{OR}]⁻ + n(NaCl)} (n=1-9) and {[Na(L_{OR})₂]⁻ + n(NaCl)} (n=1-8) [20].

Protonation of Na(L_{OMe}) with HCl(g) in CH₂Cl₂ afforded NaCl and [CpCo{P(O)(OMe₂)}₃H₂]Cl that reacted with 1 equivalent of Na(L_{OMe}) to give [CpCo{P(O)(OMe)₂}₃H] and NaCl. Hydrolysis of [CpCo{P(O)(OMe)₂}₃H] in boiling water gave MeOH and the highly water-soluble tris-phosphonic acid ligand [CpCo{P(O)(OH)₂}₃H] (H(L_{OH})). Reaction of HL_{OH} with K₂CO₃ in water gave K(L_{OH}), which is a two-dimensional coordination polymer in the solid state with each K being coordinated by twelve oxygen atoms of six tris-phosphonic acids. Attempts to crystallize H(L_{OH}) from H₂O/acetone in a glass vessel led to [(L_{OH})₂Si] characterized by X-ray crystallography. The ligand H(L_{OH}) is a rather strong Brønsted acid with

Scheme 4. Structure of $[(L_{S-BINOL})Na(C_6H_{12}O_2)_2]$.

measured p K_a values of 2.0, 4.0, 6.3 and 9.6, respectively [21].

3. Survey of metal complexes with L_{OR}^-

3.1. s-and p-Block elements

 L_{OR}^- react with main group metal ions to give $[M(L_{OR})_2]^{n+}$ (M=third-row element) or $[M(L_{OR})(X)]^{n+}$ (M=second-row element) compounds. Potentiometric, NMR, and electrospray mass spectrometric studies suggested that aqueous mixtures of BeSO₄ with Na(L_{OEt}) are composed of monomeric and dimeric species, presumably $[Be(L_{OEt})(H_2O)]^+$ and $[Be_2(L_{OEt})_2(\mu-OH)]^+$, respectively. Although $[Be(L_{OEt})(H_2O)]^+$ has not been isolated, $[Be(L_{OEt})(OPPh_3)]^+$ was obtained by reaction of $Be(ClO_4)_2$ with Na(L_{OEt}) in the presence of OPPh₃. Reaction of $Be(ClO_4)_2$ with Na(L_{OEt}) in water afforded trinuclear $[Be_3(L_{OEt})_4][ClO_4]$, in which the two bridged L_{OEt}^- ligands bind to the central Be in a μ - κ^1 O: κ^2 O'O" mode (Scheme 5) [22].

Treatment of AlMe3 with $Na(L_{OEt})$ or $Tl(L_{OEt})$ afforded a yellow compound that was formulated as $[(L_{OEt})AlMe_2(AlMe_3)]$ on the basis of NMR spectroscopy [23]. Anhydrous MCl_3 (M=Ga and In) reacted with $Na(L_{OEt})$ in THF in 1:1 and 2:1 molar ratios afforded $[M(L_{OEt})_2][MCl_4]$ and $[M(L_{OEt})_2]Cl$, respectively. Similar reactions with $[M(Me)Cl_2]$ gave $[M(L_{OEt})_2][M(Me)Cl_3]$ [24]. Treatment of $[GeCl_2C_4H_8O_2]$ ($C_4H_8O_2=1,4$ -dioxane) with $Na(L_{OEt})$ afforded $[(L_{OEt})GeCl]$ that reacted with NaN_3 to give $[(L_{OEt})Ge(N_3)]$. Both $[(L_{OEt})GeCl]$ and $[(L_{OEt})Ge(N_3)]$ exhibit pseudo trigonal bipyramidal coordination geometry around the Ge with one long Ge-O bond and two considerably short Ge-O bonds. Oxidation of $[(L_{OEt})Ge(N_3)]$ with 2 equivalents of HN_3 afforded $[(L_{OEt})Ge(N_3)_3]$ that exhibits approximately octahedral geometry [25].

Treatment of $[(Tp^*)InCl_2(MeCN)]$ $(Tp^* = hydrotris(3,5-dimethylpyrazol-l-yl)borate)$ with $Ag(L_{OMe})$ and $Tl(L_{Et})$ afforded the heteroleptic compounds $[(L_{OMe})In(Tp^*)][AgCl_2]$ and $[(L_{Et})In(Tp^*)][Cl,$ respectively. Equilibrating $[(Tp^*)_2ln]$

Scheme 5. Monomeric and dimeric Be(L_{OEt})⁺ species in aqueous solutions.

Scheme 6. Structure of $[(L_{OEt})Y]_2(\mu-L')_2$ (1).

[PF₆] and [(L_{OMe})₂ln][PF₆] in a 1:1 molar ratio produced [In(L_{OMe})₂][PF₆], suggestive of the preference of In(III) for an anti-symbiotic arrangement of hard (L_{OMe}^-) and soft [(Tp*-)₂] ligands [26]. [(L_{OEt})Pb(Tp*)] prepared from PbCl₂ and equimolar amounts of Na(L_{OEt}) and KTp in water [27] was found to be a mixture of [Pb(L_{OEt})₂] and [Pb(Tp*)₂] according NMR analysis [26]. The organotin(IV) compounds [(L_{OMe})SnR_{3-n}Cl_n] (R=Me, Ph; n=0-3) synthesized from [SnR_{3-n}Cl_n] and Na(L_{OMe}) display complex NMR spectra at room temperature, indicative of fluxional behavior in solutions [28].

3.2. d-Block elements

3.2.1. Groups 3 and 4

Treatment of YbCl₃ with Na(L_{OEt}) in THF gave dinuclear $[(L_{OEt})Y]_2(\mu-L')_2$ (1) $([L']^{2-}=[CpCo\{P(O)(OEt)_2\}\{P(O)_2(OEt)\}]^{2-})$ containing two dealkylated L_{OEt}^- as bridged ligands (Scheme 6) [29] whereas YbCl₃ reacted with Na(L_{OEt}) and Na(OAc) in a 1:1:2 molar ratio to give $[(L_{OMe})Yb]_2(\mu-OAc)_2$, the two acetate ligands of which exhibit the $\mu-\kappa O:\kappa O'$ and $\mu-\kappa O:\kappa^2 O'$ binding modes [30]. The crystal structure of $[(L_{OMe})_2La(H_2O)_2]Cl$ showing an approximate square prismatic O₈ ligand environment around La has been determined [31].

Treatment of [ZrCl₄(THF)₂] with two equivalents of Na(L_{Et}) afforded [Zr(L_{Et})₂]Cl₂ whereas that with Na(L_{OEt}) gave labile [(L_{OEt})₂ZrCl₂] that underwent Arbuzov dealkylation to give dinuclear [(L')Zr]₂(μ -L')₂ (2) (Scheme 7) [32,33]. Reaction of [CpZrCl₃] with Na(L_{OEt}) led to Cp⁻ displacement and the formation of [(L_{OEt})ZrCl₃] [32].

Half-sandwich [(L_{OEt})TiCl $_3$] was prepared conveniently by reacting [Ti(OPr i) $_2$ Cl $_2$] with Na(L_{OEt}) followed by chlorination with HCl in Et $_2$ O. Treatment of [(L_{OEt})TiCl $_3$] with tetrachlorocatechol (C $_6$ Cl $_4$ (OH) $_2$) afforded [(L_{OEt})Ti(C $_6$ Cl $_4$ O $_2$)Cl], which was hydrolyzed to give [(L_{OEt})Ti(C $_6$ Cl $_4$ O $_2$)] $_2$ (μ -O). Treatment of [(L_{OEt})TiCl $_3$] with Na $_2$ (S-BINOL) afforded dinuclear [(L_{OEt}) $_2$ Ti $_2$](μ -O) (μ -S-BINOL), in which the S-BINOL ligand binds to the two Ti in a μ -O,O' mode [34].

In an attempt to model the aqueous chemistry of Ti⁴⁺ and Zr⁴⁺, interactions of titanyl and zirconyl compounds

with Na(L_{OEt}) in the presence of oxyanions in aqeuous solutions have been studied [35-38]. Reaction of titanyl sulfate with Na(L_{OEt}) in 0.6 mM and 1 M sulfuric acid afforded the dinuclear sulfato compounds $[(L_{OEt})Ti]_2(\mu-O)_2(\mu-SO_4)$ and $[(L_{OEt})Ti]_2(\mu-O)_2(\mu-SO_4)$, respectively, which can be interconverted to each other by addition of H₂SO₄ or NaOH. Treatment $[(L_{OEt})Ti]_2(\mu-O)_2(\mu-SO_4)$ with Ag(OTf) (OTf = triflate) afforded the trinuclear μ_3 -sulfato complex $[\{(L_{OEt})Ti\}_3(\mu_{T})]$ $O_{3}(\mu_{3}-SO_{4})\{Ag(OTf)\}\$ [OTf], whereas that with $Ba(NO_{3})_{2}$ led to isolation of tetranuclear [(L_{OEt})Ti]₄(μ-O)₆ containing an adamantane-like Ti₄O₆ core. Reaction of [(L_{OEt})Ti]₂(μ- $O_2(\mu-SO_4)$ with $[Ru(dtbpy)(PPh_3)_2Cl_2]$ (dtbpy = 4,4'-di-tertbutyl-2,2'-bipyridine) in the presence of Ag(OTf) afforded a trinuclear Ti(IV)/Ru(IV) complex, $[\{(L_{OEt})Ti\}_2(\mu-O)_3(\mu_3-D)]$ SO₄){Ru(dtbpy)(PPh₃)][OTf]₂, which has a measured magnetic moment of $2.4 \mu_B$. (Scheme 8) [36].

Scheme 7. Structure of $[(L')Zr]_2(\mu-L')_2$ (2).

titanyl sulfate
$$+ NaL_{OEt}$$
 $1M H_2SO_4$
 $60 mM M_2SO_4$
 $60 mM M_2SO_4$

Scheme 8. Dinuclear and trinuclear Ti(IV)-L_{OEt} sulfato complexes.

Treatment of titanyl sulfate with Na(L_{OEt}) in dilute H₂SO₄ the presence of Na₃PO₄, Na₄P₂O₇, K₂Cr₂O₇ led to isolation of [$\{(L_{OEt})Ti\}_3(\mu$ -O)₃(μ -PO₄)], [$\{(L_{OEt})Ti\}_2(\mu$ -O)(μ -P₂O₇)], and [$\{(L_{OEt})Ti\}_3(\mu$ -CrO₄)₃], respectively (Scheme 9) [35].

Zirconyl nitrate reacted with Na(L_{OEt}) in dilute nitric acid (pH 2.1) to give a ca. 1:1 mixture of tetranuclear [(L_{OEt}Zr)₄(μ_3 -O)₂(μ -OH)₄(H₂O)₂][NO₃]₄ and [(L_{OEt})₂Zr(κ^2 -NO₃)][NO₃] [38]. At lower pH (<1), the same reaction yielded a ca. 2:3 mixture of [(L_{OEt})₂Zr(κ^2 -NO₃)][NO₃] and [(L_{OEt})Zr(κ^2 -NO₃)₃]. The Zr₄ core (3) in [(L_{OEt}Zr)₄(μ_3 -O)₂(μ -OH)₄(H₂O)₂]⁴⁺ is reminiscent of the [Zr₄(OH)₈]⁸⁺ core (4) found in ZrOCl₂·8H₂O (Scheme 10) [39]. In acidic solutions, [(L_{OEt})Zr(κ^2 -NO₃)₃] and [(L_{OEt}Zr)₄(μ_3 -O)₂(μ -OH)₄(H₂O)₂]⁴⁺ can be inter-converted to each other by treatment with NaOH or HNO₃.

The electrospray mass spectrum of $[(L_{OEt})Zr(\kappa^2-NO_3)_3]$ in weakly acidic solutions displays a molecular ion peak at

 $\it m/z$ 1320, assignable to $[(L_{OEt}Zr)_4(\mu_3\text{-O})_2(\mu\text{-OH})_4(H_2O)_2]^{2+}$, suggesting that in aqueous solutions Zr(IV)- L_{OEt} compounds predominantly exists as tetrameric species. It should be noted that aqueous solutions of Zr^{4+} contain predominantly the tetranuclear species $[Zr_4(OH)_8(H_2O)_{16}]^{8+}$, which is in equilibrium with octanuclear $[Zr_8(OH)_{20}(H_2O)_{24}]^{12+}$ [40]. In acetone/ H_2O solution, **3** can hydrolyze the phosphodiester $(4\text{-NO}_2C_6H_4O)_2P(O)H$ to give a cubane cluster $[L_{OEt}Zr]_4(\mu\text{-PO}_4)_4$ along with $4\text{-NO}_2C_6H_4OH$. Treatment of zirconyl nitrate with $Na(L_{OEt})$ in the presence of Na_3PO_4 afforded $[(L_{OEt})Zr]_3(\mu\text{-OH})_3(\mu_3\text{-O})(\mu_3\text{-PO}_4)$ (Scheme 11) [38].

Efforts have been made to prepare $L_{OEt}Zr(IV)$ sulfato compounds in oxygen-rich ligand environments that are relevant to sulfated zirconia materials. Treatment of zirconyl nitrate with $Na(L_{OEt})$ in 3.5 M sulfuric acid afforded $[(L_{OEt})_2Zr(\kappa^2-NO_3)][L_{OEt}Zr(\kappa^2-SO_4)(\mu-NO_3)]$. The nitrate-free Zr(IV) sulfato compound $[(L_{OEt})Zr(\kappa^2-SO_4)(H_2O)]_2(\mu-SO_4)$ was prepared by reaction of $ZrCl_4$ with $Na(L_{OEt})$ and Na_2SO_4 in 1.8 M H_2SO_4 . Treatment of $[(L_{OEt})Zr(\kappa^2-SO_4)(H_2O)]_2(\kappa-SO_4)$ with triflic acid afforded $[Zr(L_{OEt})_2][OTf]_2$ whereas that with Ag(OTf) gave a mixture of trinuclear $[\{(L_{OEt})Zr(\kappa^2-SO_4)(H_2O)\}3(\mu_3-SO_4)][OTf]$ and $[Zr(L_{OEt})_2][OTf]_2$ (Scheme 12) [36].

Reaction of titanyl sulfate with $Na(L_{OEt})$ in dilute sulfuric acid followed by $HBF_4(aq)$ led to isolation of $[(L_{OEt})TiF_3]$. Similarly, $[(L_{OEt})ZrF_3]$ was obtained by the reaction of zirconyl nitrate with $Na(L_{OEt})$ followed by $HBF_4(aq)$ [34]. Although $[(L_{OEt})MF_3]$ (M=Ti, Zr) are very stable compounds due to the strong M(IV)–F bonds, the fluoride ligands can be removed easily by using trimethylsilyl compounds. Thus, treatment of $[(L_{OEt})MF_3]$ with Me_3SiOTf (OTf=triflate) afforded $[(L_{OEt})M(OTf)_3]$ whereas that with $[ReO_3(OSiMe_3)]$ gave $[(L_{OEt})Ti(ReO_4)_3]$ and $[(L_{OEt})Zr(ReO_4)_3(H_2O)]$ [35]. $[(L_{OEt})M(OTf)_3]$ hydrolyzed readily to give hydroxo and oxo complexes. The outcome of hydrolysis of $[(L_{OEt})Zr(OTf)_3]$ was found to be dependent upon the source of moisture and reaction conditions. While reaction of $[(L_{OEt})Zr(OTf)_3]$ with $Na_2WO_4\cdot xH_2O$ gave din-

$$N_{3}PO_{4}$$

$$N_{4}PO_{7}$$

$$N_{5}PO_{7}$$

Scheme 9. Ti(IV)-L_{OEt} chromato and phosphate compounds.

$$\begin{array}{c} \text{pH} < 1 \\ \\ \text{LoEt} Zr(NO_3)_3 + [(L_{OEt})_2 Zr(NO_3)]NO_3 \\ \\ \text{zirconyl nitrate} \\ \\ \text{H} \\ \text{NaL}_{OEt} \\ \\ \text{pH} \sim 2.1 \\ \\ \text{pH} \sim 2.1 \\ \\ \text{[(L_{OEt})_4 Zr_4(O)_2(OH)_4(H_2O)_2]NO_3]_4} \\ \\ \text{+} \\ \text{[(L_{OEt})_2 Zr(NO_3)]NO_3} \\ \end{array}$$

Scheme 10. Zr(IV)-L_{OEt} nitrato compounds.

uclear $[\{(L_{OEt})Zr(H_2O)_2\}_2(\mu\text{-OH})_2][OTf]_4$, recrystallization of $[(L_{OEt})Zr(OTf)_3]$ from wet CH_2Cl_2 in air led to isolation of trinuclear $[\{(L_{OEt})Zr(H_2O)\}_3(\mu_3\text{-O})\text{-}(\mu\text{-OH})][OTf]_4$ [29]. Treatment of $[(L_{OEt})Ti(OTf)_3]$ with S-binapO₂ and $K[N(Ph_2PO)_2]/CsOH$ afforded the terminal hydroxo complexes $[(L_{OEt})Ti(S\text{-binapO}_2)(OH)][OTf]_2$ (S-binapO₂ (S)-(-)-2,2'-bis(diphenylphosphinoyl)-1,1'-binaphthyl) and $[(L_{OEt})Ti\{N(Ph_2PO)_2\}(OH)][OTf]$, respectively (Scheme 13) [37].

3.2.2. Groups 5 and 6

A number of groups 5–8 L_{OR}^- complexes with metal–ligand multiple bonds have been synthesized. Treatment of [V(O)X₃] (X=Cl, F) with Na(L_{OR}) (R=Me, Et) afforded [(L_{OR})V(O)X₂]. Reaction of [(L_{OMe})V(O)X₂] with Br₂ in CH₂Cl₂ afforded [V(O)(L_{OMe})₂][V(O)Br₄] [41]. Treatment of [Cr(NBu^t)Cl₂(dme)] (dme = 1,2-

dimethoxyethane) with $Na(L_{OEt})$ afforded the imido-Cr(V) complex $[(L_{OEt})Cr(NBu^t)Cl_2]$ [42].

Reactions of $[(L_{OR})(CO)_2M=C\text{-}p\text{-}tol]$ (M=Mo, W; p-tol=p-tolyl) with oxidizing agents have been investigated (Scheme 13). Treatment of $[(L_{OR})(CO)_2M=C\text{-}p\text{-}tol]$ (M=Mo, W) with I_2 and Br_2 afforded $[(L_{OR})(CO)(I)_2M=C\text{-}p\text{-}tol]$ (R=Me, Et) and $[(L_{OR})MoBr_4]$ (R=Prⁱ), respectively. Reaction of $[(L_{OR})(CO)_2W\equiv C\text{-}p\text{-}tol]$ with S_8 and moist air afforded $[(L_{OR})(CO)_2W\equiv C\text{-}p\text{-}tol]$ and $[(L_{OR})W(O)]_2(\mu\text{-}O)$, respectively. Treatment of $[(L_{OR})(CO)_2M\equiv C\text{-}p\text{-}tol]_2Pd]$, in which the W=C units bind to Pd like an alkyne. Reaction of $[\{(L_{OMe})(CO)_2W\equiv C\text{-}p\text{-}tol\}_2Pd]$ with $[Pd(\eta^3\text{-}allyl)Cl]_2$ and C_2Cl_6 in boiling THF afforded $[(L_{OMe})Cl_2W\equiv C\text{-}p\text{-}tol]$ (Scheme 14) [43].

Chlorination of $[(L_{OR})(CO)_2W \equiv C-p-\text{tol}]$ (R = Me, Prⁱ) with PhICl₂ afforded $[(L_{OR})Cl_2W = C-p-\text{tol}]$. A similar reac-

$$H_{2}O-[Zr] \longrightarrow OH$$

$$H_{2}O-[Zr] \longrightarrow OH$$

$$H_{2}O-[Zr] \longrightarrow OH$$

$$RO \longrightarrow POH$$

$$H_{2}O-[Zr] \longrightarrow OH$$

$$R = 4-NO_{2}C_{6}H_{4}$$

$$Zirconyl \ nitrate$$

$$\frac{NaL_{OEt}}{HNO_{3}}$$

$$\frac{O}{[Zr]} \longrightarrow OH$$

$$R = 4-NO_{2}C_{6}H_{4}$$

$$\frac{O}{[Zr]} \longrightarrow OH$$

$$R = 4-NO_{2}C_{6}H_{4}$$

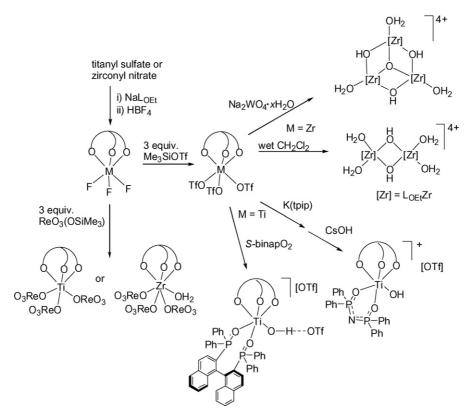
$$\frac{O}{[Zr]} \longrightarrow OH$$

$$R = 4-NO_{2}C_{6}H_{4}$$

$$\frac{O}{[Zr]} \longrightarrow OH$$

$$\frac{C}{[Zr]} \longrightarrow OH$$

$$\frac{C}{[Zr]} \longrightarrow OH$$


Scheme 11. Tetranuclear and trinuclear Zr(IV)- L_{OEt} phosphato compounds.

$$ZrCl_4 \xrightarrow{\text{NaL}_{OEt}} \underbrace{\begin{array}{c} \text{NaL}_{OEt} \\ \text{H}_2SO_4 \\ \text{O}_2S \xrightarrow{\text{O}} \text{OH}_2 \\ \text{H}_2O \xrightarrow{\text{O}} \text{O-SO}_2 \\ \text{HOTf} \\ \\ [(L_{OEt})_2Zr][OTf]_2 \\ \end{array}}_{\text{Ag}(OTf)} \underbrace{\begin{array}{c} \text{O}\\ \text{H}_2O \xrightarrow{\text{O}} \text{OH}_2 \\ \text{IZr} \\ \text{OO}\\ \text{OH}_2 \\ \text{IZr} \\ \text{OO}\\ \text{OO}\\$$

Scheme 12. Dinuclear and trinuclear Zr(IV)-L_{OEt} sulfato compounds.

tion with $[(L_{OR})(CO)_2Mo\equiv C\text{-}p\text{-}tol]$ yielded $[L_{OMe}MoCl_2]_2$ and $[L_{OR}MoCl_4$. Treatment of $[(L_{OMe})Cl_2W\equiv C\text{-}p\text{-}tol]$ with Me₃SnF afforded $[(L_{OMe})F_2W\equiv C\text{-}p\text{-}tol]$ that reacted with NaOEt and Me₃SiNMe₂ to give $[(L_{OMe})(OEt)_2W\equiv C\text{-}p\text{-}tol]$ and $[(L_{OMe})F(NMe_2)W\equiv C\text{-}p\text{-}tol]$, respectively [44]. $[(L_{OMe})Cl_2W\equiv C\text{-}p\text{-}tol]$ reacted with ROH to yield $[(L_{OMe})Cl(OR)W\equiv C\text{-}p\text{-}tol]$ (R = OMe, OEt, OCH₂CH₂OH) whereas the dimethoxy compound $[(L_{OMe})(MeO)_2W\equiv C\text{-}p\text{-}tol]$ was prepared from $[(L_{OMe})Cl_2W\equiv C\text{-}p\text{-}tol]$ and

KOMe. Reaction of $[(L_{OMe})Cl_2W\equiv C-p$ -tol] with aqueous Et_3N or alumina gave two isomeric oxocarbene complexes $[(L_{OMe})Cl(O)W\equiv CH-p$ -tol], which reacted with Al_2O_3 to give the dioxo-alkyl complex $[(L_{OMe})(O)_2W-CH-p$ -tol]. Treatment of $[(L_{OMe})Cl_2W\equiv C-p$ -tol] with Et_2NH and Pr^nNH_2 afforded $[(L_{OMe})Cl(NHEt)W\equiv C-p$ -tol] and the imido-carbene complex $[(L_{OMe})(Pr^nN)W\equiv CH-p$ -tol], respectively. Air oxidation of $[(L_{OMe})Cl(X)W\equiv CH-p$ -tol] yielded $[(L_{OMe})W(O)(X)Cl](X=OMe, OPr^i, NPr^n)$ (Scheme 15) [45].

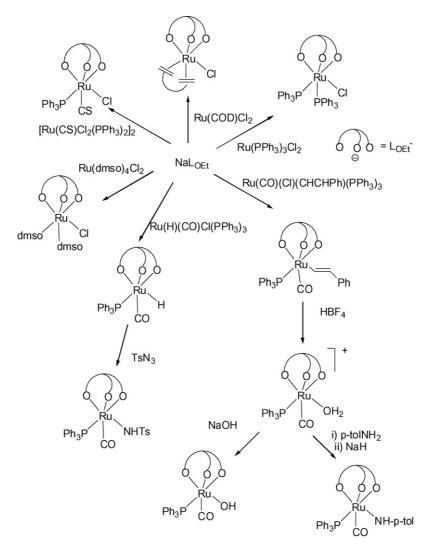
Scheme 13. Ti(IV) and Zr(IV) triflato and perrhenato complexes.

Scheme 14. Oxidation of W(VI)- and Mo(VI)-L_{OEt} carbyne complexes.

Treatment of [Mo(Nmes) $_2$ Cl $_2$ (dme)] (mes = 2,4,6-trimethylphenyl) with Na(L $_{OEt}$) afforded the bis-imido complex [(L $_{OEt}$)Mo(Nmes) $_2$ Cl $_2$ 1 that reacted with HCl in Et $_2$ O to give [(κ^2 -HL $_{OEt}$)Mo(Nmes) $_2$ Cl $_2$]. Reaction of [Mo(Nmes)(O) Cl $_2$ (dme)] and [Mo(Nmes)Cl $_3$ (dme)] with Na(L $_{OEt}$) afforded [(L $_{OEt}$)Mo(Nmes)(O)Cl $_2$ 1 and [(L $_{OEt}$)Mo(Nmes)Cl $_2$ 2], respec-

tively [46]. Treatment of $[(L_{OMe})Mo(O)Cl_2]$ with NaOMe and 30% H_2O_2 in THF gives $[(L_{OMe})Mo(O)_2Cl]$ and $[(L_{OMe})Mo(O)_2(OH)]$, respectively [47]. Reaction of $[MoCl_4(THF)_2]$ with Me_3SiN_3 followed by treatment with $Na(L_{OEt})$ led to isolation of the Mo(VI) nitrido complex $[(L_{OEt})Mo(N)Cl_2]$ [48].

Scheme 15. L_{OMe}W(VI) oxo, carbene, and imido complexes.


3.2.3. Groups 7 and 8

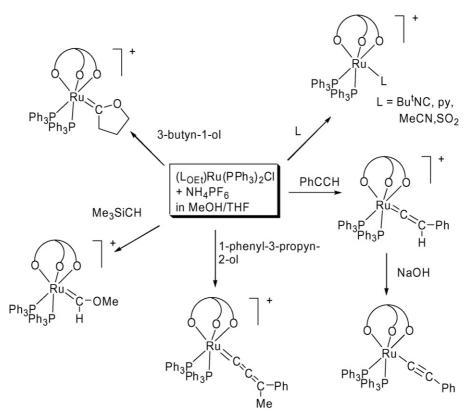
The homogeneous self-exchange rate constant for $[(L_{OEt})_2Mn]^{0/+}$ was estimated to be $4.25\times 10^{-3}\,M^{-1}\,s^{-1}$ from the cross reaction with ferrocenium salts, whereas the heterogeneous electron transfer rate constant for the couple was determined to be ca. $7-8\times 10^{-7}\,\mathrm{cm\,s^{-1}}$ by cyclic voltammetry. The solid-state structure of $[(L_{OEt})_2Mn]^+$ shows a sizeable Jahn-Teller distortion with three distinctly different Mn–O distances [1.981(5), 2.053(4) and 1.923(4) Å]. Nevertheless, the kinetic inertness of the $[(L_{OEt})_2Mn]^{0/+}$ couple has been attributed to the thermodynamic stability of the Mn(II) state with a half-filled d shell, rather than the geometric/structural rearrangement accompanying the redox changes [49].

Treatment of $[M(CO)_3(H_2O)_3]^+$ (M=Tc,Re) with $Na(L_{OR})$ (R=Me,Et) afforded $[(L_{OR})M(CO)_3]$ [50]. The Re(VIII) trioxo compounds $[(L)Re(O)_3]$ were synthesized from $[Re_2O_7]$ and NaI $(L^-=[CpCo\{P(O)(OMe)(O(CH_2)_5CO_2Me)\}_3]^-$, L_{OMe}^- , or L_{OEt}^-) [18,51]. Treatment of $[Re(O)X_3(PPh_3)_2]$ with Na(L) afforded $[(L)Re(O)X_2]$ (X=Cl,Br,I). $[(L)Re(O)X_2]$ slowly hydrolyzed in water to give perrhenic acid [18]. Treatment of $[Re(N)Cl_2(PPh_3)_2]$ with $Na(L_{OEt})$ afforded the nitrido

complex [(L_{OEt})Re(N)Cl(PPh₃)] that reacted with MeOTf, PhCH₂Br, [Ph₃C]BF₄, [Au(PPh₃)(OTf)], [Re(Me)(O)₃], and [Ru(S₂CNEt₂)(PPh₃)₂(CO)(OTf)] to give the imido complexes [(L_{OEt})Re(NMe)Cl(PPh₃)], [(L_{OEt})Re(NCH₂Ph)Cl(PPh₃)], and [(L_{OEt})Re(NCPh₃)Cl(PPh₃)], and the nitrido-bridged bimetallic complexes [(L_{OEt})Cl(PPh₃)Re(μ -N){Au(PPh₃)}], [(L_{OEt})Cl(PPh₃)Re(μ -N){Re(Me)(O)₃}] and [(L_{OEt})Cl(PPh₃)Re(μ -N)Ru(S₂CNEt₂)(PPh₃)(CO)(H₂O)], respectively. The cyclic voltammograms of [(L_{OEt})Re(N)Cl(PPh₃)] and [(L_{OEt})Re(O)Cl₂] in CH₂Cl₂ displayed reversible Re(VI/V) couples at -0.296 and 0.470 V versus Cp₂Fe^{+/0} whereas the oxidation of [L_{OEt} Re(NMe)Cl(PPh₃)] is irreversible with E_{pa} = 0.620 V [52].

Treatment of RuO₄ in CCl₄ with Na(L_{OR}) (R = Me, Et) in 1% H₂SO₄ followed by afforded the oxo-bridged dinuclear Ru(IV) compounds $[(L_{OR})Ru(OH)]_2(\mu-O)_2$. Protonation of $[(L_{OR})Ru(OH)]_2(\mu-O)_2$ with HOTf afforded $[\{(LOR)Ru(H_2O)\}_2(\mu-O)_2][OTf]_2$. The Ru(V) oxo compounds $[(L_{OR})Ru(O)]_2(\mu-O)_2$ have been prepared by oxidation of $[(L_{OR})Ru(OH)]_2(\mu-O)_2$ with RuO₄ (R = Et) or PhIO/NEt₄OH (R = Me) [53,54]. The Ru-O(terminal) and average Ru-

Scheme 16. Organoruthenium complexes supported by L_{OEt}⁻.


O(bridged) distances in $[(L_{OEt})Ru(O)]_2(\mu-O)_2$ are 1.725(3) and 1.886(3) Å, respectively. The Ru–Ru separation of 2.912(1) Å in $[(L_{OMe})Ru(O)]_2(\mu-O)_2$ is considerably longer than that in $[(L_{OEt})Ru(OH)]_2(\mu-O)_2$ (2.452(1) Å), indicating that there is little or very weak metal–metal interaction in the Ru(V)–Ru(V) dimer. The lack of Ru-Ru interaction in the edge-sharing bioctahedral Ru(V)–Ru(V) dimer has been attributed to the $\sigma^2\pi^2\delta^{*2}$ configuration (cf. $\sigma^2\pi^2\delta^2\delta^{*2}$ for the Ru(IV)–Ru(IV) counterpart) [53].

A series of organoruthenium compounds with L_{OEt}⁻ have been synthesized (Scheme 16) [55–58]. Treatment of Na(L_{OEt}) with $[Ru(PPh_3)_3Cl_2]$, $[Ru(H)(Cl)(CO)(PPh_3)_3]$, [Ru(CH = $CHPh)(CO)Cl(PPh_3)_3], [Ru(Me_2SO)_4Cl_2], [Ru(COD)Cl_2]_x$ (COD = cyclooctadiene), $[Ru(CS)(PPh_3)_2Cl_2]_2$ $[(L_{OEt})Ru(PPh_3)_2Cl],$ $[(L_{OEt})Ru(H)(PPh_3)(CO)],$ $[(L_{OEt})Ru(CH = CHPh)(PPh_3)(CO)], \quad [(L_{OEt})Ru(Me_2SO)_2Cl],$ $[(L_{OEt})Ru(COD)Cl]$, and $[(L_{OEt})Ru(CS)(PPh_3)Cl]$, respectively. The cyclic voltammogram of [(L_{OEt})Ru(PPh₃)₂Cl] displayed a reversible Ru(III/II) couple at ca. -0.02 V versus Cp₂Fe^{+/0}, which is less anodic than that for [CpRu(PPh₃)₂Cl] (0.45 V) [55], indicating that L_{OEt}^- is a stronger donor than Cp⁻. Oxidation of [CpRu(PPh₃)₂Cl] with I₂ afforded the Ru(III) compound [CpRu(PPh₃)₂Cl]⁺, isolated as the triiodide salt. Migratory insertion of $[(L_{OE_t})Ru(H)(PPh_3)(CO)]$ with tosylazide afforded the tosylamido compound $[(L_{OEt})Ru(NHTs)(PPh_3)(CO)]$ (Ts = tosyl). Protonation of $[(L_{OEt})Ru(CH = CHPh)(PPh_3)(CO)]$ with HBF₄ $[(L_{OEt})Ru(\eta^2-PhCH=CH_2)(PPh_3)(CO)][BF_4],$

which lost the styrene ligand in wet CH_2Cl_2 to give $[(L_{OEt})Ru(H_2O)(PPh_3)(CO)][BF_4]$. Chloride abstraction of $[(L_{OEt})Ru(COD)Cl]$ with $Ag(BF_4)$ in acetone/ H_2O afforded cationic $[(L_{OEt})Ru(COD)(H_2O)]^+$, which can also be prepared from $[(COD)Ru(H_2O)_4]^{2+}$ and $Na(L_{OEt})[59]$. Deprotonation of $[(L_{OEt})Ru(H_2O)(L)_2][BF_4]$ and $[(L_{OEt})Ru(NH_2-p\text{-tol})(L)_2][BF_4]$ afforded the Ru(II) hydroxo $[(L_{OEt})Ru(OH)(L)_2]$ and amido $[(L_{OEt})Ru(NHtol)(L)_2]$ complexes $(L_2 = (CO)(PPh_3)$ or COD), respectively.

[(L_{OEt})Ru(PPh₃)₂Cl] underwent chloride dissociation in polar solvents such as MeOH to give [(L_{OEt})Ru(PPh₃)₂ (solv)]+, which reacted with Lewis bases L to form the adducts $[(L_{OEt})Ru(PPh_3)_2(L)]^+$ $(L = Bu^tNC,$ pyridine, Me_2SO , SO_2). Treatment of $[(L_{OEt})Ru(PPh_3)_2Cl]$ with PhC≡CH, Me₃SiC≡CH, 3-butyn-l-ol, and l-phenyl-3-propyn-2-ol in MeOH/THF in the presence of NH₄PF₆ afforded $[(L_{OEt})(PPh_3)_2Ru = C = CHPh][PF_6],$ $[(L_{OEt})(PPh_3)_2Ru =$ CH(OMe)[PF₆], [(L_{OEt})(PPh₃)₂Ru = $CH(CH_2)_3O$][PF₆], and $[(L_{OEt})(PPh_3)_2Ru = C = CMePh][PF_6]$, respectively. Deprotonation of $[(L_{OEt})(PPh_3)_2Ru = C = CHPh]$ [PF₆] with NaOH gave the σ -acetylide compound $[(L_{OEt})(PPh_3)_2Ru(C \equiv CPh)]$ (Scheme 17) [55,56].

Relatively few Os– L_{OR} complexes have been isolated. Treatment of [${}^{n}Bu_{4}N$] [Os(N)Cl₄] with Na(L_{OEt}) afforded [(L_{OEt})Os(N)Cl₂] that reacted with PPh₃ to give the Os(IV) phosphoraminato complex [(L_{OEt})Os(NPPh₃)Cl₂] [52]. Reaction of [Os(CBu t)(CH₂CMe₃)₂(py)₂(OTf)] with Na(L_{OEt}) afforded [(L_{OEt} (CH₂(CMe₃)₂Os \equiv CBu t] [60].

Scheme 17. Ru-L_{OEt} carbene, vinylidene, and allenylidene compounds.

3.2.4. Groups 9–12

Treatment of Na(L_{OMe}) with excess COCl₂ in MeOH afforded dinuclear [L_{OMe}Co(µ-L_{OMe})CoCl₂] in which the bridged L_{OMe}^- ligands bind to the two Co(II) in a μ - κ^3 , κ^1 fashion. By contrast, reaction $M(NO_3)_2 \cdot 6H_2O$ (M = Co, Ni) with Na(L_{OMe}) in MeOH followed by recrystallization from acetone gave $[(L_{OMe})M(\kappa^2-NO_3)(Me_2CO)].$ Substitution of $[(L_{OMe})Ni(\kappa^2-NO_3)(Me_2CO)]$ with L and py (pyridine) afforded $[(L_{OMe})Ni(\kappa^2-NO_3)(L)][NO_3]$ 2,5-dimethylpyridine, 3,5-dimethylpyrazole) $(L = PPh_3,$ and [(L_{OMe})Ni(py)₃][NO₃], respectively. Treatment of $[(L_{OMe})M(\kappa^2-NO_3)(acetone)]$ (M = Co and Ni) with afforded the tetrameric μ_3 -azido complexes $[(L_{OMe})M(\mu_3-N_3)]_4$. While reactions of $[(L_{OMe})M(\kappa^2-NO_3)]_4$ (Me₂CO)] with NaOAr gave the μ-aryloxo compounds $[(L_{OMe})M]_2(\mu-OAr)_2$ (Ar = 2,4,6-Me₃C₆H₂, 2,6-Me₂C₆H₃, or $2-NO_2C_6H_4$) and $[(L_{OMe})M(L)]_2(\mu-OAr)_2$ (Ar = 4nitrophenyl or pentaflurophenyl, L = MeOH or H_2O), similar reactions with NaOH and NaOR' (R' = alkyl,Ph, 4-tol, $2,6-X_2C_6H_4$ where X = F, Cl) led to isolation of $[M(L_{OMe})_2]$. Treatment of $[(L_{OMe})M(\kappa^2-NO_3)(L)]$ (L = acetone or PPh₃) with bidentate ligands $N^{\wedge}N$ afforded $[(L_{OMe})M(N^{\wedge}N)(\kappa^{1}-NO_{3})]$ (N^N = 2,2'-bipyridine, N,N,N',N'tetramethylethylenediamine). Analogous Mn(II) complexes $[(L_{OMe})Mn(\mu_3-N_3)]_4$ $[(L_{OMe})Mn]_2(\mu-OAr)_2$ (Ar = 2.6- $Me_2C_6H_3$, 2- $NO_2C_6H_4$) and $[(L_{OMe})Mn(bpy)(NO_3)]$ have been prepared similarly [61,62].

Treatment of $[(\eta^5-C_5Ph_5)Ni(CO)Br]$ and $[(\eta^5-C_5Ph_5)Ni(CO)(ClO_4)]$ with $Na(L_{OR})$ (R = Me, Et, Pr^i) afforded the 20-electron complexes $[(\eta^5-C_5Ph_5)Ni(L_{OR})]$, which can be oxidized quasi-reversibly at ca. +0.26 V versus SCE (standard cal_{ome}l electrode). Oxidation of $[(\eta^5-C_5Ph_5)Ni(L_{OR})]$ led to dissociation of the C_5Ph_5 ligand and formation of $[(L(oR)_2Ni)]$ [63].

The Pd(IV) alkyl compounds [(LOR)Pd(Me)2(R')] were prepared by oxidative addition of cis-[PdMe₂(bpy)] with $R'X(R'X = MeI, PhCH_2Br, C_3H_3Br)$ in the presence of $Na(L_{OR})$ or $Ag(L_{OR})$ [64]. The solid-state structure of [(L_{OMe})PdMe₃], which is iso-structural with [(L_{OMe})PtMe₃] [65], has been determined. Treatment of [Pd(all)Cl]₂ 2-methylpropenyl, 2-*tert*-butylpropenyl, (all = propenyl,1,1,2-trimethylpropenyl) with Ag(L_{OR}) afforded the π -allyl compounds [$(\kappa^2$ -L_{OR})Pd(all)]. Reaction of [(L_{OMe}) Pd (C_4H_7)] with PPh3 in CH2Cl2 and toluene led to formation of $[(C_4H_7)Pd(PPh_3)_2](L_{OMe}) \quad \text{ and } \quad [(C_4H_7)Pd(PPh_3)(L_{OMe})],$ respectively [66]. Treatment of [PdCl₂(MeCN)₂] and $[Pd(PPh_3)Cl]_2(\mu-Cl)_2$ with $Ag(L_{OMe})$ afforded $[(\kappa^2-L_{OMe})_2Pd]$ and $[(\kappa^2-L_{OMe})PdCl(PPh_3)]$, respectively. Reaction of $[(\kappa^2-L_{OMe})PdCl(PPh_3)]$ L_{OMe})₂Pd] with PPh₃ led to displacement of one L_{OMe}⁻ ligand and formation of $[(\kappa^2-L_{OMe})Pd(PPh_3)_2](L_{OMe})$. Carbonylation of $[(\kappa^2-L_{OMe})PdCl(PPh_3)]$ with CO (40 bar) afforded $[Pd(CO_2Me)(PPh_3)]_2(\mu-Cl)_2$, which with PPh₃ and Ag(L_{OMe}) to give [Pd(CO₂Me)Cl(PPh₃)₂] and [(L_{OMe})Pd(COMe)(PPh₃)], respectively [67]. Alkylation of $[(\kappa^2-L_{OMe})PdCl(PPh_3)]$ with Me₄Sn afforded $[(\kappa^2-L_{OMe})Pd(Me)(PPh_3)]$ that reacted with CO to give $[(\kappa^2-L_{OMe})Pd(COMe)(PPh_3)]$ [68].

Treatment of $[(L_{OR})Cu(MeCN)]$ with L afforded $[(L_{OR})Cu(\eta^2-L)]$ (L=olefin, alkynes, and p-benzoquinone) [69]. Analogous complexes containing a chiral tripodal ligand $[(L_{S-BINOL})Cu(\eta^2-L)]$ (L=PhC=CH, Me₃SiC=CH) have been prepared and structurally characterized. The solid-state structures of $[L_{or}Cu(\eta^2-L)]$ feature the "2+1" distorted tripod ligand coordination, in which one Cu—O bond is significantly longer than the other two, indicative of a tendency of a Cu(I) alkene and alkyne compounds to be three-coordinated [69,19].

Treatment of [ZnR₂] (R = Me, Et, Prⁱ) with Tl(L_{OEt}) afforded [(L_{OEt})ZnR]. Reaction of [(L_{OEt})ZnEt] with I₂, HCl, HNO₃ and HOAc afforded [(L_{OEt})ZnX] (X = I, Cl, NO₃ and OAc), which were alternatively prepared from Tl(L_{OEt}) and ZnX₂ [23].

3.3. f-Block elements

Interactions of L_{OR} with trivalent lanthanide ions in aqueous media gave stable cationic $[Ln(L_{OR})_2(H_2O)_2]^+$ compounds [5]. Solid samples of [Eu(L_{OEt})₂(H₂O)₂]BF₄ underwent reversible dehydration to give [Eu(L_{OEt})₂(H₂O)₂]BF₄ and during the reaction the crystallinity of the substance was retained [70]. Treatment of $[(\eta^8-C_8H_8)Sm(\mu-Cl)(THF)]_2$ with two equivalents of $Na(L_{OEt})$ afforded $[(\eta^8-C_8H_8)Sm(L_{OEt})]$ [71]. $[Ln(por)(L_{OEt})]$ have been prepared by treatment of [Ln(por)(H2O)3]+ $(H_2por = tetrakis(3,4,5-trimethoxyphenyl)porphyrin, tetrakis(4$ methoxyphenyl)porphyrin, tetraphenylporphyrin, or tetra(ptolyl)porphyrin; Ln = Er or Yb) with $Na(L_{OEt})$. [72]. Interaction of $[Ln\{N(SiMe_3)_2\}_3] \cdot [LiCl(THF)]_x$ (Ln = Er, Yb) with N-confused tetraphenylporphyrin (H2NCTPP) followed by $Na(L_{OMe})$ afforded [(L_{OMe})Ln(NCTPP)]. The solid-state structure of $[(L_{OMe})Yb(NCTPP)]$ shows an η^2 -agostic interaction between Yb and the inter C–H bond of the NCTPP ligand [73].

Treatment of UX₄ (X = BH₄, Cl) and ThCl₄ with Na(L_{OEt}) afforded [(L_{OEt})UX₃] and [(L_{OEt})ThCl₃], respectively [74]. Reaction of [(L_{OEt})UCl₃] with Na(L_{OEt}) and TlCp gave [(L_{OEt})₂UCl₂] and [(L_{OEt})(Cp)UCl₂], respectively [75]. An attempt to alkylate [(L_{OEt})₂UCl₂] with Me₃CCH₂Li resulted in nucleophilic attack of the Cp ring in L_{OEt}⁻ by the neopentyl group with concomitant reduction of Co(III) to Co(I), and the formation of [(η^4 -C₅H₅CH₂CMe₃)Co{P(O)(OEt)₂}₃]₂U that has been characterized by X-ray crystallography [76].

4. Applications of metal complexes with Kläui's tripodal ligands

4.1. Electrocatalysis [54]

Reduction of $[\{(L_{OMe})Ru(H_2O)\}_2(\mu\text{-}O)][OTf]_2$ with alcohols, aldehydes, or PPh3 in MeCN afforded the

Scheme 18. Ti(IV)-catalyzed ring opening of epoxides.

Scheme 19. Ti(IV)- and Zr(IV)-catalyzed Diels-Alder reaction of cyclohexadiene and acrolein.

hydroxo-bridged Ru(III) dimer $[\{(L_{OMe})Ru(MeCN)\}_2(\mu-OH)_2][OTf]_2$. In buffered aqueous solutions, the reduction of $[\{(L_{OMe})Ru(H_2O)\}_2(\mu-O)][OTf]_2$ by formaldehyde to give the formate adduct $[\{(L_{OMe})Ru\}_2(\mu-OH)(\mu-O_2CH)][OTf]_2$ was found to be auto-catalytic via an inner-sphere mechanism. Oxidation of $[\{(L_{OMe})Ru\}_2(\mu-OH_2)(\mu-O_2CH)][OTf]_2$ with Ag(OTf) gave the Ru(IV) dimer $[\{(L_{OMe})Ru\}_2(\mu-O)(\mu-O_2CH)][OTf]_2$ that reacted with formaldehyde to regenerate the Ru(III)–Ru(III) dimer and formate. The $[(L_{OMe})Ru(OH)]_2(\mu-O)_2$ can function as an electrocatalyst for oxidation of formaldehyde through its Ru^IV–Ru^IV/Ru^III Ru^III couple at relatively low potentials (near 0 V versus SCE).

4.2. Organic transformations

Treatment of sodium malonate with [(L_{OMe})Pd(all)] (all = propenyl, 2-methylpropenyl) resulted in the formation of the C–C bond coupling products (allyl)CH(CO₂Et)₂ whereas that with [(L_{OMe})Pd(3-oxo-chlestenyl)] and [(L_{OMe})Pd(4,6- η -(cholestenyl)] led to elimination of the corresponding cholestadienes. Reaction of [(L_{OMe})Pd(all)] with sodium 2-acetylcyclopentanoate (Na(acp)) resulted in substitution of the acp⁻ for the L_{OMe} - ligand [77].

Ti(IV)-L_{OEt} complexes have been used as Lewis acid catalysts for organic transformations. For example, [(L_{OEt})TiCl₃] can catalyze the ring-opening of styrene oxide and cyclohexene oxide with Me₃SiN₃ to give the corresponding azidohydrins in 52 and 72%, respectively (Scheme 18) [34].

In the presence of $0.5 \, \text{mol}\%$ of $[(L_{\text{OEt}})\text{Ti}(\text{OTf})_3]$, 1,3-cyclohexadiene reacted with acrolein to give the Diels–Alder product in 83% yield with an *endo:exo* ratio ofca. 19:1. A slightly lower yield was found for the Zr catalyst $[(L_{\text{OEt}})\text{Zr}(\text{OTf})_3]$ (68% yield, *endo:exo* ratio ofca. 9:1) (Scheme 19) [35].

The Ti(IV) perrhenate complex $[(L_{OEt})Ti(ReO_4)_3]$ is capable of catalyzing oxidation of sulfides with tert-butylhydroperoxide (TBHP) (Table 1). For example, treatment of methyl p-tolylsulfide with TBHP with 5 mol% of $[(L_{OEt})Ti(ReO_4)_3]$ afforded a ca. 20:1 mixture of the sulfoxide and sulfone in 95% yield. $[(L_{OEt})Ti(ReO_4)_3]$ is a considerably more active catalyst than $[(L_{OEt})Ti(OTf)_3]$ and $[(L_{OEt})Ti]_2(\mu\text{-CrO}_4)_3$, suggesting that a different and more reactive intermediate, presumably a Re alkylperoxo species, is involved in the Ti/Re catalyst system. $[n\text{-NBu}_4]$ $[ReO_4]$ is inactive in the sulfide oxidation, indicating that in the bimetallic Ti/Re system, the Ti(IV) center may act as a Lewis acid activating the Re tert-butylperoxo moiety that

Table 1 Ti(IV) and Zr(IV)-catalyzed oxidation of methyl p-tolylsulfide with TBHP^a

$$\frac{t\text{-BuOOH, 5 mol\% cat.}}{\text{CH}_2\text{Cl}_2, \text{RT,}} + \frac{0}{\text{S}}$$

Catalyst	Time (h)	%Yield	Selectivityb	
[L _{OEt} Ti(OTf) ₃] ^c	24	46	14.3	
$[(L_{OEt}Ti)_2(\mu\text{-O})(\mu\text{-SO}_4)_2]^c$	24	71	16.8	
$[(L_{OEt}Ti)_2(\mu\text{-CrO}_4)_3)]$	5	44	13.7	
$[L_{OEt}Ti(ReO_4)_3]$	0.25	93	17.6	
$[L_{OEt}Zr(ReO_4)_3(H_2O)]$	0.5	85	2.3	
$[n\text{-Bu}_4N][\text{ReO}_4]$	3	2	N.D. ^d	

- ^a Conditions: methyl *p*-tolyl sulfide (0.3 mmol), TBHP (0.36 mmol), catalyst (0.015 mmol), CH₂Cl₂ (2 mL).
- ^b Sulfoxide/sulfone ratio.
- c 20 mol% of catalyst was used.
- ^d Not determined.

undergoes oxo transfer to the sulfide. The Zr(IV) perrhenato complex $[(L_{OEt})Zr(ReO_4)_3(H_2O)]$ can also catalyze the sulfide oxidation but with a much lower selectivity (ca. 2.3). Thus, it appears that for the M/Re bimetallic catalysts, the $L_{OEt}M(IV)$ moiety has an influence on the reactivity/selectivity of the Re alkyperoxo active intermediates [35].

The use of the chiral tripodal ligand $L_{S\text{-BINOL}}^-$ in asymmetric catalysis has been reported. For example, treatment of 4-chlorostyrene with PhINTs in the presence of 5 mol% of [($L_{S\text{-BINOL}}$)Cu(MeCN)] afforded the aziridines in 82% yield and 65% yield (Scheme 20) [19].

Reaction of benzaldehyde with allyltrichlorosilane in the presence of 20 mol.% of Na($L_{S\text{-BINOL}}$) afforded the homoallyl alcohol 4-phenyl-l-buten-4-ol in 80% yield and 30% yield (Scheme 21) [19]. It seems likely that the catalytic allylation of aldehydes involves the activation of the silyl group by the P=O chelate, although it is not clear whether $L_{S\text{-BINOL}}^-$ binds to the Si in a bidentate or tridentate fashion.

Scheme 20. Cu(I)-catalyzed asymmetric aziridination of 4-chlorostyrene with PhINTs.

Scheme 21. Asymmetric allylation of benzaldehyde with allyltrichlorosilane.

4.3. Homogeneous catalysis

Rh(I) complexes with Kläui tripodal ligands can catalyze hydrogenation of alkenes such as cyclohexene. For the hydrogenation of cyclohexene in CH_2Cl_2 with $[(L_{OMe})_2Rh_2(CO)_3]$, precipitation of Rh metal was observed, suggesting that the catalytic activity of the Rh compound may be the result of a heterogeneous reaction. However, no Rh precipitate was formed when acetone was added to the reaction mixture presumably because the acetone can stabilize the catalytically active species. Consistent with this suggestion, $[(L_{OMe,OR'})Rh(CO)_2](R=OC_3H_6C(O)CH_3)$ containing keto groups in the ligand pendant arms can catalyze hydrogenation of cyclohexene homogeneously in CH_2Cl_2 without precipitation of Rh metal [12].

Rh(I) complexes supported by functionalized tripodal ligands $L_{OMe,OR'}^{}$ are more efficient hydroformylation catalysts than those with LOMe-. In the presence of PPh3 additive, [(L_{OMe.OR'})Rh(CO)₂] can catalyze hydroformylation of propene with a turnover number of 690 (cf. 50 for [(L_{OMe})₂Rh₂(CO)₃]). The enhanced catalytic activity of [(L_{OMe.OR'})Rh(CO)₂] compared with that of the L_{OMe}⁻ analogue has been attributed to the coordinative bonding of the keto functionality to the Rh center [12]. The bis-acyl complexes $[(L_{OMe})Rh(COR)_2]$ $(R = C_2H_5 \text{ or } C_6H_{13})$ have been isolated during the hydroformylation of alkenes with [(L_{OMe})₂Rh₂(CO)₃], although it is not clear where the bis-acyl compounds come to play in the catalytic cycle of Rh-catalyzed hydroformylation. Analogous bis-acyl compounds supported by a sulfonated tri-pyrazolyl ligand [(Tpms)Rh(COR)₂] $(TpmS^- = tris(pyrazolyl)methanesulfonate)$ have also been characterized [78].

4.4. Catalytic polymerization

In the presence of AlCl₃ activator, $[(L_{OPr})(O)ClW = CH_2-p$ -tol] is an active catalyst for ring-opening metathesis polymerization of cycloctene [45]. $[(L_{OEt})TiCl_3]$ is capable of catalyzing polymerization of vinyl chloride with methyl aluminoxane co-catalyst with activity comparable to that for $[Cp*TiCl_3]$. The poly(vinylchloride) prepared with the Ti-L_{OEt} catalyst showed bimodal molecular weight distribution, and the molecular weight decreases as polymerization temperature increases [79].

4.5. Extraction and separation of metal ions

Owing to their high affinity for hard metal ions, L_{OR}^- have been used as ionophores for extraction and separation of metal ions. The extraction of Li^+ , Na^+ , Mg^{2+} and Ca^{2+} with L_{OEt}^- has been studied and the effects of pH and ligand concentra-

tion examined. Li⁺ could be specifically separated from Na⁺ and K⁺. Separation of Li⁺ from Mg²⁺ and Ca²⁺ was achieved by masking the and Ca²⁺ with EDTA or precipitation of them with L_{OEt}^- before the extraction [80]. Resins containing L_{OEt}^- on Amberlite[®] XAD-7 were found to sorb Am(III) and Pu(IV) strongly but exhibit low affinity for U(VI) due to the geometrical mismatch of tripodal L_{OEt}^- and the pentagonal or hexagonal planar coordination environment preferred by the linear UO_2^{2+} ion. The sorption for both Am³⁺ and Pu⁴⁺ by the resins was found to decrease with increasing nitric acid concentration, but the effect is more pronounced for the former. Thus, Am³⁺ could be separated from Pu⁴⁺ by adjusting the nitric acid concentration. Although Fe(III) severely suppresses the Pu(IV) sorption under equilibrium conditions, the ability of the resins to separate Pu(IV) under dynamic conditions is maintained [81].

5. Conclusion

The Kläui oxygen tripodal ligands are versatile ligands that can bind tightly to both hard and soft metal ions, exhibiting interesting coordination and organometallic chemistry. Owing to their high hydrolytic stability, water-soluble M-L_{OR} complexes may serve as models for metal aqua ions. Interactions of hydroxo/oxo-bridged M(IV)-L_{OEt} (M=Ti and Zr) compounds with oxyanions in aqueous media give clusters that have core structures similar to those of oxide-based materials. The study of aqueous solution chemistry of water-soluble M(IV)-L_{OEt} complexes offers an opportunity to better understand some reactions of metal aqua ions that are otherwise difficult to follow by conventional spectroscopic methods. The investigation of structures and reactivity of polynuclear hydroxo/oxo-bridged M-L_{OR} complexes in aqueous and non-aqueous media provides new insights into the aqueous chemistry of tetravalent metal ions.

Acknowledgment

The support from the Hong Kong Research Grants Council (project number 602203) and the Hong Kong University of Science and Technology is gratefully acknowledged. Q.-F. Zhang thanks the Science and Technological Fund of Anhui Province, PR China for the Outstanding Youth Award (06046100).

References

- [1] W. Kläui, Angew. Chem. Int., Ed. Engl. 29 (1990) 627.
- [2] W. Kläui, H. Werner, Angew. Chem. Int., Ed. Engl. 15 (1976) 172.
- [3] W. Kläui, H. Neukomm, H. Werner, G. Huttner, Chem. Ber. 110 (1977) 2283
- [4] W. Kläui, Z. Naturforsch. 34B (1979) 1403.
- [5] W. Kläui, Hel. Chim. Acta 60 (1977) 1296.
- [6] W. Kläui, H. Otto, W. Eberspach, E. Buchholz, Chem. Ber. 115 (1982) 1922.
- [7] W. Kläui, J. Organomet. Chem. 184 (1980) 49.
- [8] W. Kläui, A. Müller, J. Organomet. Chem. 253 (1983) 45.
- [9] W. Kläui, W. Eberspach, R. Schwarz, J. Organomet. Chem. 252 (1983) 347.
- [10] W. Kläui, A. Müller, W. Eberspach, R. Boese, I. Goldberg, J. Am. Chem. Soc. 109 (1987) 164.
- [11] U. Kölle, Coord. Chem. Rev. 135 (1994) 623.

- [12] O. Krampe, C.-E. Song, W. Kläui, Organometallics 12 (1993) 4949.
- [13] E.E. Román, C.F. Tapia, M.S. Hernández, Polyhedron 5 (1986) 917.
- [14] W. Kläui, H.-O. Ashahr, G. Shramm, U. Englert, Chem. Ber. 130 (1997) 1223.
- [15] M. Scotti, M. Valderrama, P. Campos, W. Kläui, Inorg. Chim. Acta 207 (1993) 141.
- [16] U. Kölle, T. Rüther, N. Le Navror, U. Englert, W. Kläui, Angew. Chem., Int. Ed. Engl. 33 (1994) 991.
- [17] T. Rüther, U. Englert, U. Kölle, Inorg. Chem. 37 (1998) 4265.
- [18] B. Dyckhoff, H.-J. Shuttle, U. Englert, T.P. Spaniol, W. Kläui, P.W. Schubiger, Z. Anorg. Allg. Chem. 614 (1992) 131.
- [19] T.C.H. Lam, W.-L. Mak, W.-L. Wong, H.-L. Kwong, H.H.Y. Sung, S.M.F. Lo, I.D. Williams, W.-H. Leung, Organometallics 23 (2004) 1247.
- [20] R. Colton, A. D'Agostino, J.C. Traeger, W. Kläui, Inorg. Chim. Acta 233 (1995) 51.
- [21] W. Kläui, N. Mocigemba, A. Weber-Schuster, R. Bell, W. Frank, D. Mootz, W. Poll, H. Wunderlich, Chem. Eur. J. 8 (2002) 2335.
- [22] P. Barbaro, F. Cecconi, D. Dakternieks, S. Dominguez, A. Duthie, C.A. Ghilardi, S. Midollini, C. Orlandini, A. Vacca, Inorg. Chem. 40 (2001) 2725
- [23] A.G. Looney, M. Cornebise, D. Miller, G. Parkin, Inorg. Chem. 31 (1992)
- [24] D.L. Reger, Y. Ding, A.L. Rheingold, R.L. Ostrander, Polyhedron 13 (1994) 3053.
- [25] A.C. Fillipou, P. Portius, G. Kociok-Köhn, V. Abrecht, J. Chem. Soc, Dalton Trans. (2000) 1759.
- [26] W. Kläui, W. Peters, N. Liedtke, S. Trofimenko, A.L. Rheingold, R.D. Sommer, Eur. J. Inorg. Chem. (2001) 693.
- [27] D.L. Reger, Y. Ding, A.L. Rheingold, R.L. Ostrander, Inorg. Chem. 33 (1994) 4226.
- (1994) 4226.[28] N.C. Lloyd, B.N. Nicholson, A.L. Wilkins, J. Organomet. Chem. 691
- [29] L. Liang, E.D. Stevens, S.P. Nolan, Organometallics 11 (1992) 3459.
- [30] S.H. Han, S.-G. Roh, J.H. Jeong, Polyhedron 18 (1999) 3027.

(2006) 2757.

- [31] I.Y. Cho, H.J. Yeo, J.H. Jeong, Acta Cryst. C51 (1995) 2035.
- [32] T.R. Ward, S. Duclos, B. Therrien, K. Schenk, Organometallics 17 (1998) 2490.
- [33] I.Y. Cho, H.J. Yeo, J.H. Jeong, Bull. Kor. Chem. Soc. 16 (1995) 1244.
- [34] T.C.H. Lam, E.Y.Y. Chan, W.-L. Mak, S.M.F. Lo, I.D. Williams, W.-T. Wong, W.-H. Leung, Inorg. Chem. 42 (2003) 1842.
- [35] X.-Y. Yi, Q.-F. Zhang, T.C.H. Lam, E.Y.Y. Chan, I.D. Williams, W.-H. Leung, Inorg. Chem. 45 (2006) 328.
- [36] Q.-F. Zhang, T.C.H. Lam, X.-Y. Yi, E.Y.Y. Chan, H.H.Y. Sung, I.D. Williams, W.-H. Leung, Chem. Eur. J. 11 (2005) 101.
- [37] X.Y. Yi, I.D. Williams, W.-H. Leung, J. Organomet. Chem. 691 (2006) 1315.
- [38] Q.-F. Zhang, T.C.H. Lam, E.Y.Y. Chan, S.M.F. Lo, I.D. Williams, W.-H. Leung, Angew. Chem., Int. Ed. 43 (2004) 1715.
- [39] A. Clearfield, P.A. Vaughan, Acta Crystallogr. 9 (1956) 555.
- [40] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, sixth ed., Wiley-Interscience, New York, 1999, p. 882.
- [41] W. Kläui, S. Schäfer, H. Wunderlich, Z. Anorg. Allg. Chem. 629 (2003) 1907.
- [42] W.-H. Leung, M.-C. Wu, K.-Y. Wong, Y. Wang, J. Chem. Soc, Dalton Trans. (1994) 1659
- [43] W. Kläui, T. Hardt, H.-J. Schulte, H. Hamers, J. Organomet. Chem. 498 (1995) 63.
- [44] W. Kläui, T. Hardt, J. Organomet. Chem. 526 (1996) 313.
- [45] W. Kläui, T. Hardt, J. Organomet. Chem. 553 (1998) 241.

- [46] A. Galindo, F. Montilla, A. Pastor, E. Carmona, E. Gutiérrez-Puebla, A. Monge, C. Ruiz, Inorg. Chem. 36 (1997) 2379.
- [47] S.-G. Roh, J.H. Jeong, Polyhedron 20 (2001) 337.
- [48] F. Montilla, A. Galindo, A. Monge, E. Gutierrez-Puebla, J. Organomet. Chem. 662 (2002) 59.
- [49] U. Kölle, U. Englert, Eur. J. Inorg. Chem. (2002) 165.
- [50] D.J. Kramer, A. Davison, A.G. Jones, Inorg. Chim. Acta 312 (2001) 215.
- [51] H.J. Banbery, W. Hussain, I.G. Evans, T.A. Hamor, C.J. Jones, J.A. McCleverty, H.J. Schulte, B. Engles, W. Kläui, Polyhedron 9 (1990) 2549.
- [52] W.-H. Leung, E.Y.Y. Chan, T.C.Y. Lai, W.-T. Wong, J. Chem. Soc, Dalton Trans. (2000) 51.
- [53] J.M. Power, K. Evertz, L. Henling, R. Marsch, W.P. Schaefer, J.A. Labinger, J.E. Bercaw, Inorg. Chem. 29 (1990) 5058.
- [54] E.P. Kelson, L.M. Henling, W.P. Schaefer, J.A. Labinger, J.E. Bercaw, Inorg. Chem. 32 (1993) 2863.
- [55] W.-H. Leung, E.Y.Y. Chan, I.D. Williams, W.-T. Wong, Organometallics 16 (1997) 3234.
- [56] W.-H. Leung, E.Y.Y. Chan, W.-T. Wong, Organometallics 17 (1998) 1245.
- [57] W.-H. Leung, E.Y.Y. Chan, W.-T. Wong, Inorg. Chem. 38 (1999) 136.
- [58] W.-H. Leung, E.Y.Y. Chan, T.C.H. Lam, I.D. Williams, J. Organomet. Chem. 608 (2000) 139.
- [59] U. Kölle, G. Flunkert, R. Börissen, M.U. Schmidt, U. Englert, Angew. Chem., Int. Ed. Engl. 31 (1992) 440.
- [60] A.M. LaPointe, R.R. Schrock, Organometallics 12 (1993) 3379.
- [61] M. Akita, D. Ma, S. Hikichi, Y. Moro-oka, J. Chem. Soc, Dalton Trans. (1999) 987.
- [62] D. Ma, S. Hikichi, M. Akita, Y. Moro-oka, J. Chem. Soc, Dalton Trans. (2000) 1123.
- [63] W. Kläui, M. Huhn, R. Herbst-Irmer, J. Organomet. Chem. 415 (1991) 133.
- [64] W. Kläui, M. Glaum, T. Wagner, M.A. Bennett, J. Organomet. Chem. 472 (1994) 355.
- [65] R.E. Marsh, W.P. Schaeffer, D.K. Lyon, J.A. Labinger, J.E. Bercaw, Act. Crystallogr. C48 (1992) 1603.
- [66] M. Glaum, W. Kläui, B.W. Skelton, A.H. White, Aust. J. Chem. 50 (1997) 1047.
- [67] B. Domhöver, H. Hamers, W. Kläui, M. Pfeffer, J. Organomet. Chem. 522 (1996) 197.
- [68] W. Kläui, M. Glaum, E. Huhn, T. Lügger, Eur. J. Inorg. Chem. (2000) 21.
- [69] B. Lenders, W. Kläui, M. Irmler, G. Meyer, J. Chem. Soc, Dalton Trans. (1990) 2069.
- [70] U. Englert, B. Ganter, T. Wagner, W. Kläui, Z. Anorg. Allg. Chem. 624 (1998) 970.
- [71] U. Reissmann, F.T. Edelmann, Z. Anorg. Allg. Chem. 629 (2003) 2433.
- [72] W.-K. Wong, A. Hou, J. Guo, H. He, L. Zhang, W.Y. Wong, K.-F. Li, K.-W. Cheah, F. Xue, T.C.W. Mak, J. Chem. Soc, Dalton Trans. (2001) 3092.
- [73] X. Zhu, W.-K. Wong, W.-K. Lo, W.-Y. Wong, Chem. Commun. (2005) 1022.
- [74] M. Wedler, J.W. Gilje, M. Noltemeyer, F.T. Edelmann, J. Organomet. Chem. 411 (1991) 271.
- [75] D. Baudry, M. Ephritikhine, W. Kläui, M. Lance, M. Nierlich, J. Vigner, Inorg. Chem. 30 (1991) 2333.
- [76] J.L. Kiplinger, B.L. Scott, C.J. Burns, Inorg. Chim. Acta 358 (2005) 2813.
- [77] B. Domhöver, W. Kläui, J. Organomet. Chem. 522 (1996) 207.
- [78] W. Kläui, D. Schramm, G. Schramm, Inorg. Chim. Acta 357 (2004) 1642.
- [79] J.-T. Xu, Q. Wang, F. Wu, Z.-Q. Fang, Eur. Polymer J. 41 (2005) 115.
- [80] H. Bukowsky, E. Uhlemann, W. Kläui, Anal. Chim. Acta 319 (1996) 271.
- [81] G.J. Lumetta, D.W. Wester, B.K. McNamara, T.L. Hubler, S.L. Latesky, C.C. Martyr, K.N. Richards, Solv. Extr. Ion Exch. 22 (2004) 947.